
1

A User-Programmable Vertex EngineA User-Programmable Vertex Engine

Erik LindholmErik Lindholm
Mark KilgardMark Kilgard

Henry MoretonHenry Moreton

NVIDIA CorporationNVIDIA Corporation

IntroductionIntroduction

•• Programmability vs. Programmability vs. ConfigurabilityConfigurability
•• Programmability is trendProgrammability is trend
•• Very efficient vertex engineVery efficient vertex engine
•• Simple yet powerful programming modelSimple yet powerful programming model
•• Supports fixed function pipelineSupports fixed function pipeline
•• Delivered in the GeForce3Delivered in the GeForce3

frame-buffer
anti-aliasing

texture
blending

setup
rasterizer

Transform
& Lighting

Pipeline RolePipeline Role

Vertex
Program

frame-buffer
anti-aliasing

texture
blending

setup
rasterizer

Transform
& Lighting

Vertex
Program

Previous Work: Geometry EnginePrevious Work: Geometry Engine

•• High bandwidth + lots of FlopsHigh bandwidth + lots of Flops
•• Low clock rateLow clock rate
•• No architectural continuityNo architectural continuity
•• VERY hard to programVERY hard to program
•• Some highSome high--level language support (maybe)level language support (maybe)
•• A compromise solution (A compromise solution (vtxvtx,prim,pix,…),prim,pix,…)

Alternative: The CPUAlternative: The CPU

•• Low bandwidth + reasonable FlopsLow bandwidth + reasonable Flops
•• High clock rateHigh clock rate
•• Excellent architectural continuityExcellent architectural continuity
•• VERY hard to use efficientlyVERY hard to use efficiently
•• Excellent highExcellent high--level language supportlevel language support
•• Flexible, but often too slowFlexible, but often too slow

2

New Design: The Vertex EngineNew Design: The Vertex Engine

•• Simple hardware for a commodity GPUSimple hardware for a commodity GPU
•• Allows user to manipulate vertex transformAllows user to manipulate vertex transform
•• Simple to use programming modelSimple to use programming model
•• Superset of fixed function modeSuperset of fixed function mode

Why Vertex Processing?Why Vertex Processing?

•• Very parallelVery parallel
•• Use single vertex programming modelUse single vertex programming model
•• Hardware can batch or interleaveHardware can batch or interleave
•• KISSKISS

Why Not Primitive Processing?Why Not Primitive Processing?

•• Face culling and clipping break parallelismFace culling and clipping break parallelism
•• Complicates memory accessesComplicates memory accesses
•• Inefficient (control takes time)Inefficient (control takes time)
•• Let hardware designers optimizeLet hardware designers optimize

Programming Model: Vertex I/OProgramming Model: Vertex I/O

•• Streaming vertex architectureStreaming vertex architecture
•• Source data converted to floatsSource data converted to floats
•• Source data loadedSource data loaded
•• Run programRun program
•• Destination data drainedDestination data drained
•• Destination data reDestination data re--formatted for hwformatted for hw

Vertex
Source

Vertex
Program

Vertex
Output

Program
Constants

Temporary
Registers

16x4 registers

128 instructions

96x4 registers

12x4 registers

15x4 registers

Programming ModelProgramming Model Data PathData Path

FPU Core

Negate
Swizzle

Negate
Swizzle

Negate
Swizzle

X Y Z WX Y Z W X Y Z W

Write Mask

X Y Z W

3

Instruction Set: The Core FeaturesInstruction Set: The Core Features

•• Immediate access to sourcesImmediate access to sources
•• Swizzle/negate on all sourcesSwizzle/negate on all sources
•• Write mask on all destinationsWrite mask on all destinations
•• DP3,DP4 most common graphics opsDP3,DP4 most common graphics ops
•• Cross product is MUL+MAD with swizzlingCross product is MUL+MAD with swizzling
•• LIT instruction implements LIT instruction implements phongphong lightinglighting

Cross Product Coding ExampleCross Product Coding Example

Cross product R2 = R0 x R1# Cross product R2 = R0 x R1

MUL R2, R0.MUL R2, R0.zxywzxyw, R1., R1.yzxwyzxw;;
MAD R2, R0.MAD R2, R0.yzxwyzxw, R1., R1.zxywzxyw, , --R2;R2;

Sample OpenGL Vertex ProgramSample OpenGL Vertex Program

static const GLubyte vpgm[] = “\!!VP1. 0\
DP4 o[HPOS].x, c[0], v[0]; \
DP4 o[HPOS].y, c[1], v[0]; \
DP4 o[HPOS].z, c[2], v[0]; \
DP4 o[HPOS].w, c[3], v[0]; \
MOV o[COL0],v[3]; \

END";

Instruction Set: The opsInstruction Set: The ops

•• 17 instructions total17 instructions total
•• ARLARL
•• MOV, MUL, ADD, MAD, DSTMOV, MUL, ADD, MAD, DST
•• DP3, DP4DP3, DP4
•• MIN, MAX, SLT, SGEMIN, MAX, SLT, SGE
•• RCP, RSQ, LOG, EXP, LITRCP, RSQ, LOG, EXP, LIT

Hardware ImplementationHardware Implementation

•• Vector SIMD Unit + Special Function UnitVector SIMD Unit + Special Function Unit
•• Multithreaded and pipelined to hide latencyMultithreaded and pipelined to hide latency
•• Any one instruction/cycleAny one instruction/cycle
•• All instructions equal latencyAll instructions equal latency
•• Free swizzling/negate/write mask supportFree swizzling/negate/write mask support

0 1 n-2 n-1........IB

0 1 n-2 n-1........O B

SIMD
Vector
 Unit

Special
Function

Unit

Constant
Memory

Instruction
Memory

Registers

writemask

sw/neg

writemask

sw/negsw/neg

HW Block DiagramHW Block Diagram

4

API SupportAPI Support

•• Designed to fit into OpenGL and D3D API’sDesigned to fit into OpenGL and D3D API’s
•• Program mode vs. Fixed function modeProgram mode vs. Fixed function mode
•• Load and bind programLoad and bind program
•• Simple to add to old D3D and OpenGL Simple to add to old D3D and OpenGL

programsprograms

DEMOSDEMOS

ConclusionConclusion

•• Very simple, efficient implementationVery simple, efficient implementation
•• Allows vertex programming continuityAllows vertex programming continuity
•• Stanford Imagine ArchitectureStanford Imagine Architecture
•• A work in progress, lots more to come…A work in progress, lots more to come…
•• We welcome your feedbackWe welcome your feedback

